元琛环保科技 - 专业SCR脱硝催化剂生产厂家
18年专注于SCR脱硝催化剂技术研发及应用    上交所科创板挂牌上市企业:688659
全国咨询热线:400-833-2880

元琛科技:蜂窝式脱硝催化剂再生技术相关情况(四)

来源:元琛环保科技 官网:https://www.shychb.com/ 点击:1115次发布时间:2022-03-07 14:10:32

前面,我们对蜂窝式脱硝催化剂再生技术行业前景和蜂窝式脱硝催化剂的应用以及失活情况进行了阐述,接下来,我们重点了解下蜂窝式脱硝催化剂的再生技术。

由于燃煤电厂失活脱硝催化剂需要定期更换,对SCR系统的运行成本产生了直接影响。另外,大量失活脱硝催化剂的废弃会导致环境污染问题。研究表明,多数情况下,失活脱硝催化剂通过再生,活性可恢复至原始催化剂的90%~105%。根据脱硝催化剂失活机理的不同,其再生方法主要有:物理清洗、化学清洗、活性组分补充等。

1.物理清洗

物理清洗是采用水冲洗失活脱硝催化剂,除去覆盖在催化剂表面的粉煤灰,使物理失活的部分催化剂表面恢复活性。Cao等用高压水枪对失活脱硝催化剂进行冲洗,冲洗后,催化剂中Al2O3的质量分数由1%降至0.49%,SO3的质量分数由约0.7%降至0.54%,表明高压水冲洗能有效清除物理吸附在脱硝催化剂表面的粉煤灰。余岳溪等采用超声水清洗失活脱硝催化剂,Ca、S、K等三种元素经TPR分析,含量分别由12.91%、14.23%、3.08%降至1.83%、1.20%、0.01%,表明超声水清洗在一定程度上也可以清除一部分物理吸附在脱硝催化剂表面的粉煤灰。李健在40 Hz下对失活脱硝催化剂进行超声清洗45 min后,对其进行XRF分析,发现催化剂中Al2O3的质量分数由1.77%降至1.42%,SiO2质量分数由4.86%降至4.25%,且研究结果显示,超声水清洗使脱硝催化剂的孔容和比表面积有所提升。

2.化学清洗

物理清洗只能清除物理吸附在脱硝催化剂表面的部分粉煤灰,但不能清除化学吸附在脱硝催化剂表面的粉煤灰。根据化学吸附在脱硝催化剂表面粉煤灰中氧化物的酸碱性不同,化学清洗可分为碱液清洗和酸液清洗。

2.1 碱液清洗

碱液清洗是将物理清洗后的脱硝催化剂浸渍于一定浓度的NaOH、Na2CO3等碱性溶液中,除去吸附在催化剂表面上的粉煤灰中的酸性物质。Yu等用0.2 mol·L-1的NaOH溶液在30 ℃下清洗失活脱硝催化剂,发现催化剂中的Al元素质量分数由42%降至28%,S元素质量分数由52%降至24%,除Al和S的效果明显。范美玲等用1.0 mol·L-1的Na2CO3溶液于室温下对As中毒的脱硝催化剂进行清洗,发现清洗后的脱硝催化剂中As2O3的含量由1.27%降至0.44%,As去除率达到66%。段秋桐等用0.05 mol·L-1的稀NaOH溶液处理失活脱硝催化剂60 min, 然后在0.5 mol·L-1的稀H2SO4溶液中浸渍60 min, Na含量降至1.69%,K、Ca、Mg等的去除率达到100%。

2.2 酸液清洗

碱液清洗只能除去粉煤灰中的酸性物质,其中的某些碱性物质需要采用酸液清洗来去除。肖雨亭等用2%的HNO3溶液清洗失活脱硝催化剂,结果显示,催化剂中K元素含量从732.2×10-6降至202.5×10-6,Na元素含量从559.4×10-6降至114.6×10-6,S元素含量也从2.20%降至0.59%,K、Na的清除效果明显,S的清除效果也较好。Zheng等用0.5 mol·L-1的H2SO4溶液清洗失活脱硝催化剂20 min后,K元素含量由初始的1 mg·g-1降为0,经250~350 ℃活性测试,脱硝催化剂活性恢复约50%~72%。王乐等用0.5mol·L-1的H2SO4溶液清洗失活脱硝催化剂,每隔5 min取酸洗液测试其含量,酸洗后的催化剂中As2O3含量由清水清洗的0.040%降至0.013%,K2O含量由0.022%降至0.018%,CaO含量由0.984%降至0.842%,表明酸液清洗对碱性物质的去除效果明显。

3.活性组分补充

脱硝催化剂在使用过程中会导致活性组分损失,且在再生过程中,酸洗、碱洗处理虽然会让催化剂上中毒的活性位恢复活性,但部分催化剂表面活性物质会溶于清洗液中,造成了一定的流失,因此,上述两种情况下损失的活性位就需要补充。通常采用浸渍法进行活性组分补充。崔力文等采用一步浸渍法负载补充活性组分,用1%的偏钒酸铵和5%的仲钨酸铵溶液混合而成的浸渍液进行一步浸渍,焙烧后催化剂上的V含量由清洗后的0.25%升至1.13%,W含量则由清洗后的1.62%升至4.83%,脱硝催化剂活性明显恢复。王登辉等采用分步浸渍法补充活性组分,先用钨酸铵浸渍再生后的催化剂,再浸渍到偏钒酸铵溶液中,偏钒酸铵与钨酸铵的质量比为1∶6,催化剂在300 ℃时脱硝效率可达到87.7%。朱恒等用偏钒酸铵和四水钼酸铵(质量比为3∶10)同步浸渍制备V-Mo/TiO2堇青石脱硝催化剂,催化剂在340 ℃时脱硝效率达到98.8%。

脱硝技术是燃煤电厂和其它含氮高温尾气清洁排放的关键技术,由于脱硝催化剂存在使用寿命有限的问题,脱硝催化剂失活后需要更换,失活脱硝催化剂如果废弃将引起环境的重金属污染,因此,失活脱硝催化剂再生成为脱硝行业的发展趋势。目前脱硝催化剂再生都是在不破坏其结构的基础上,使失活的活性位恢复活性,并补充活性组分完成再生过程。受再生脱硝催化剂重复使用次数的限制,当前这种修复式的脱硝催化剂再生方法还不能满足脱硝行业的发展需求,迫切需要开发循环利用的脱硝催化剂再生新技术。



本站部分文章采摘于网络,如侵权联系删除,转载请注明链接的出处即可:https://www.shychb.com/hyzx/399.html